Effective Patient Warming

A special guest blog post by Dr Colin Dunlop.

Colin Dunlop is a Diplomate of the American College of Veterinary Anesthesiologists. His research interests include hypothermia and prevention of anesthesia morbidity and mortality. He consults in anesthesia and critical care for small and large animal practices, biomedical research, and provides Continuing Education programs for veterinarians and veterinary nurses world-wide.

border

Introduction

In my spare time I try to run a company that manufactures anesthetic delivery equipment and devices for patient warming, so please understand that some of the information I have included references specific warming devices, some of which we manufacture. The information sheets linked to this post try to fairly assess the capabilities of the various technologies and summarize information we have from published research and data from our in-house testing.  Written here is information I wrote in a hypothermia article some years ago.  It is simply to highlight the practicality of warming a hypothermic patient using IV fluid.   It is written in calories, and a Calorie is the heat required to raise 1 ml water by 1 degree Celsius.

Using the same information, you could also attempt to a very simplistic estimate of heat loss due to humidification of inspired air.  Heat conservation mechanisms (the nose!) play a big part, and intubation completely alters them. Recent work shows that the loss of heat of warmed gas from the Y-piece to the distal end of the endotracheal tube is up to 10 degrees Celsius!

IV Fluid Warmer Comparison

Not all IV Fluid Warmers are the same, and some can even be dangerous.  Test data from our evaluation of IV Fluid Warmers can be found here: IV Fluid Warmer Comparison. According to our tests, most are ineffective if their performance is tested 200mm downstream from the fluid warmer, which is equivalent to the distance to an anesthetized animal, draped for surgery.  Their performance is also affected by IV fluid flow rate – the larger the volume of fluid administered rapidly the less effective they are at warming.
Hanging bags of warm IV fluids in a cold operating room will produce the same kind of result as using an IV Fluid Line Warmer, as illustrated in the evaluation of IV Fluid Warmers linked above.

Hypothermia Review

The one-page guide linked here: Hypothermia Review summarizes information from various sources and includes an idealized graph that show heat loss occurs from the time of premedication, and that substantial heat loss occurs from induction to the time an animal is draped in surgery.  Once draped, heat loss tends to stabilize, but warming hypothermic anesthetized animals during surgery is very difficult. In fact even the best forced warm air heating systems, which are the most effective  way to deliver large volumes of heat, typically take 45minutes of “contact” before body temp begins to rise.  So using forced warm air heating devices to “increase” the body temperature during anesthesia for short procedures is probably not very effective. The rationale for pre-warming and preventing heat loss prior to draping for surgery is where our efforts should be focused.

Forced Warm Air Heating Review

The white paper linked here: FWAH Review and Cage Warming  shows the lag-time for warming and that not all these systems actually raise body temperature.  Also this paper makes the case for warming animals after premedication, before induction. Typically, warming animals during recovery, who became hypothermic in surgery animals, takes 1 to 2 hours of technician time.  Conversely, keeping animals at 37 degrees Celsius takes less than 45 min of “pre-warming”, and the blankets placed over animals in cages can be re-used.

Effective warming with fluids

Finally, use warm fluids effectively in severely hypothermic animals at the end of abdominal or thoracic surgery by pouring large volumes of warm (40 degrees Celsius) into the abdominal or thoracic cavity.  Be patient.  Wait several minutes before suctioning it out and then repeat this process three or four times, until the body temperature starts to rise. Then close the cavity.  At the same time use forced warm air heating, which will further increase the body temperature.

borderCalculating Calories and Warming With IV Fluids

A calorie (cal) is the amount of heat required to raise 1 ml (or 1 gm) of H2O 1 oC.
The specific heat of animal tissue is 0.83 cal/gm. Therefore a 10 kg dog requires 8,300 cal (8.3 kcal) to raise its temperature 1 oC.
Warming IV fluid administered during surgery:
A 10 kg dog administered IV fluid at 10 ml/kg/hr = 100 ml/hr.
If the fluid is warmed to 44 oC and the dog is 34 oC, then we can deliver:
(44-34oC =) 10 oC x 100 ml/hr = 1000 cal/hr

To Warm the 10 kg at 34 oC dog to 37 oC using IV fluid at 100 ml/hr requires:
(37-34 =) 3oC x 8,300 cal = 25,000 cal (approx) / 1000 cal/hr (from the IV fluid) = 25 hours!

Warming IV fluid may help prevent cold fluid exacerbating heat loss but is not effective for warming severely hypothermic animals.

Respiratory heat loss due to humidification is significant

During inspiration the nose and pharyngeal mucosa transfer heat and moisture to the air which is largely recovered during expiration, thus conserving heat. Air has a low heat capacity (0.24 cal/gm) and a low weight (1.3 gm/l). Saturated air holds 44 mg H2O/L at 37 oC which requires 24 calories. A 10 kg dog taking 20 x 100ml breaths/min ventilates 120 L/hr so requires (24 cal/L x 120 L/hr) = 2880 cal/hr for humidification. Intubation inhibits heat/moisture conservation via the nose, resulting in body temperature loss of about 1/3 oC/hr.

Logo w 2017 tag line horiz copy

Advertisements
Posted in Uncategorized | Leave a comment

IVECCS / ACVAA Conference – Washington, DC

IVECCS sign

We’re really excited to be exhibiting at the IVECCS / ACVAA conference being held at the Gaylord National Resort and Convention Center in Washington, DC.  It’ll be a great time to reconnect with old friends and show off what innovations Advanced Anesthesia Specialists brings to veterinary practice this year.  Spoiler Alert – we’re introducing a heated bain circuit this year.  Heated!  Yeah.  We’re excited about it too!

If you’re at the conference, stop by our booth #326 and say “hi”.

Posted in Uncategorized | Leave a comment

Breathing New Life Into Veterinary Care

dealflow-bannerAdvanced Anesthesia Specialist’s Founding CEO receives recognition from the Australian Department of Industry and Science

dealflow is a quarterly magazine published by the Australian Government Department of Industry and Science. It showcases high-performing, small and medium sized Australian companies supported by the Accelerating Commercialisation element of the Government’s Entrepreneurs’ Programme.  The global efforts of Dr Colin Dunlop to improve anesthesia outcomes for small animals are applauded in the current issue of dealflow.  The article is reproduced below.

Better anesthesia for small animals.

Company founder Colin Dunlop anesthetizing a dog for a CT scan

Company founder Colin Dunlop anesthetizing a dog for a CT scan

Few companies can claim to help household pets while reducing greenhouse gases, but that’s what Advanced Anesthesia Specialists and its managing director Dr Colin Dunlop are doing.

The company is becoming a global leader in the design, manufacture and service of innovative veterinary anesthesia equipment, and continues to break new frontiers.

Dunlop says the mortality risk of anesthesia for animals under 20 kilograms, such as dogs and cats, is about 500 times higher than for humans. To improve survival rates the company has developed a new integrated anesthesia delivery system with Australian Government commercialization support.

Heated anesthesia breathing hoses reduce the risk of hypothermia during an operation

Heated anesthesia breathing hoses reduce the risk of hypothermia during an operation

The new system has three components. A Heated Smooth Wall Anesthesia tubing system, which warms the gas delivered to patients. This world-first system was released in Australia in 2014 and in UK and US markets this year. It helps to prevent hypothermia, the commonest complication of anesthesia and surgery.

“Hypothermia occurs in up to 85 per cent of anesthetized human infants and small animals,” Dunlop says.

The new Stingray anesthesia rebreathing circuit.

The new Stingray anesthesia rebreathing circuit.

The second component is the Stingray—the first low-flow, low‑resistance with rapid response rebreathing anesthesia circuit for patients under 20 kilograms. It improves on existing anesthesia technology and recycles exhaled breath, which also helps to reduce the risk of hypothermia.

The Stingray, which will be released to global markets in September this year, also reduces the release of environmentally harmful anesthetic gas into the atmosphere by up to 90 per cent.

The system’s third element is an anesthetic vaporizer which provides early warnings of problems during surgery. Dunlop says this novel system, which is in clinical trial stage, will help fill a gap in anesthetic training among veterinarians and veterinary nurses. It is due for release in mid-2016.

International usability is a vital element of the company’s design work. “We could never afford to design these products just for Australia, as the volume of potential sales here is too small to be cost-effective … we need to design equipment for use around the world,” he says.

Protecting intellectual property is also a company priority. “We have invested a lot of money and time in protecting the IP of our technology and devices and have over 13 families of patents, plus new patent applications lodged,” Dunlop says.

Australian Government Commercialisation Adviser, John Grew, has been assisting the company with its move into markets.

“Colin and his team have addressed the many challenges of refining the design, prototyping and pre-production of their products,” Grew says. “A lot of new IP has been developed and the products now coming to market reflect experience and insight.”

Advanced Anesthesia Specialists is owned by veterinarians and Dunlop’s main focus is to improve the odds for pets undergoing anesthesia in Australia and overseas.

“Our company is making a difference—by developing better, more sophisticated equipment we are improving outcomes for both veterinary staff, their patients and the environment.”

To visit this article in dealflow, click here

To visit website for Advanced Anesthesia Specialists, North America, click here

Posted in Advanced Anesthesia Specialists, Anesthesia Concepts, Hypothermia | Leave a comment

The Cardiovascular System: A Pump, Some Pipes, and Fluid

 

One of my favorite mental pictures of the cardiovascular system is that of A Pump, Some Pipes, and Fluid. Broken down to this simple picture, it’s easier for me to interpret the information I gather as I monitor anesthetized patients.

A Pump

The heart is at the top of this minimalist’s view of the cardiovascular system by acting as a pump.  Its job is to pump blood around the body. The left side of the heart pumps oxygenated blood from the lungs to the rest of the body. The right side pumps stale blood from the body back to the lungs for a fresh supply of oxygen.

Some Pipes

The pipes, of course, are those estimated 60,000 miles of veins and arteries distributed throughout the body.  Most blood vessels can alter their size in order to accommodate the necessary flow of blood.  When a vessel’s interior grows larger to allow more blood flow, it’s called vasodilation.  When it shrinks down to decrease blood flow it’s called vasoconstriction.  Under normal circumstances, the vessels automatically vasodilate and vasoconstrict to help regulate blood flow through the body.  However, many anesthesia drugs alter the body’s ability to respond automatically in this manner.

Fluid

It is generally accepted that most domestic animals have blood volumes of about 7% of their body weight (cats have a little lower percentage).  That equals about 70ml per kilogram or about 35ml per pound of body weight.  That means your 60 pound Labrador has a blood volume of about half a gallon.  When you consider that a half gallon of blood is pumped through 60,000 miles of blood vessels, you realize that it can’t be all places all the time.  The body is constantly making choices to route blood where it is most needed at any given point in time.

Pressure is the driving force for blood flow through capillaries that supply oxygen to organs and tissues. Blood pressure is needed to propel blood through vascular beds, with priority to those of the brain, heart, lungs and kidneys.  When I notice a drop in blood pressure, I immediately run through this simplified picture of the cardiovascular system. Why is the pressure dropping? Is the problem with the pump (ie not pumping hard enough or fast enough)? Is the problem with the pipes (ie vasodilation or positional occlusion of major vessels)? Or is the problem with the fluid (ie blood loss or vascular pooling)? The answers to these questions can help me anticipate a corrective treatment.

Anesthesia guidelines from the American College of Veterinary Anesthesia and Analgesia (ACVAA) and the American Animal Hospital Association (AAHA) urge us to monitor blood pressure during anesthesia, yet specialists say that blood pressure equipment alone is not the main ingredient to a smooth anesthetic event.  It’s the anesthetist’s knowledge that provides the greatest margin of safety for the patient.

Ken writerKen Crump (kencrump.com) is a writer and animal anesthetist and writes Making Anesthesia Easier for Advanced Anesthesia Specialists.  He makes dozens of Continuing Education presentations on veterinary oncology and anesthesia across the United States and in Canada.  Ken retired from Colorado State University in 2008. 

 

Posted in Anesthesia Concepts, Veterinary Anesthesia | Leave a comment

Decision Fatigue – Building a Case For Checklists

How many food-related decisions do you make in a day? Ten? Fifty? A hundred?

When Cornell University staff and students were asked this question in a recent study, the average response was fifteen. However, after they answered specific questions about when, what, how much and where they ate, researchers found they actually made an average of 221 food-related decisions each day.

The more decisions we make throughout the day, the harder each choice is for our brains to process. No matter how rational and clear-minded you try to be, you can’t make the estimated 35,000 daily decisions we all make, without paying a biological price. It’s called decision fatigue. Although you are not consciously aware of being tired, each decision you make takes its toll on your mental energy. Eventually our brains look for shortcuts. One shortcut is to become reckless: to act impulsively instead of expending the additional energy to think things through. The other shortcut is to simply do nothing at all.

“Good decision-making is not a trait of the person, in the sense that it’s always there,” says social psychologist Roy F Baumeister. “It’s a state that fluctuates.”

Baumeister, a researcher and professor of psychology at Florida State University says, “The best decision makers are the ones who know when not to trust themselves.”

In high-pressure environments like a veterinary hospital, we are up against two main decision-making difficulties. The first is our own fallible memory and attention, especially when routine matters are overlooked under the strain of more pressing events. In the swirl of sedating a patient, placing a catheter, inducing anesthesia, clipping for surgery, and transporting the patient to the surgery table, it’s easy to overlook the routine task of checking the amount of oxygen left in the tank.

The second difficulty is that we sometimes lull ourselves into deliberately skipping steps, even when we remember them. Even the most competent people have been known to tell themselves that certain steps don’t matter. For example, it’s standard to check a patient’s pulse and heartrate during a physical examination. But being diligent to do both – listen to the heart and feel the pulse – rarely uncovers a worrisome issue. So sometimes we skip one. “It’s never been a problem before,” we tell ourselves. Until one day it is.

Simple checklists can provide protection against these mental failures. According to Atul Gawande, in his book The Checklist Manifesto, checklists remind us of the bare minimum necessary steps in any procedure by making them explicit. They catch mental flaws inherent in all of us – flaws of memory and attention.

A good checklist doesn’t have to be long to be effective. But good checklists are always precise and efficient. They leave zero room for interpretation. Don’t attempt to spell out every single step, instead provide reminders of only the most critical and important steps. Good checklists are, above all, practical.

Checklist ManifestoOnce a checklist is written, it’s important to be disciplined and stick with it. No matter how smart, talented or experienced we are chances are we’ll still drop the ball sometimes. And we’re not alone. The fact is, we are all plagued by missed subtleties, overlooked knowledge, and out-right errors. No one is immune to screwing-up. Checklists are absolutely essential for handling the high stakes and complex situations that happen to anesthetists. As Gawande points out in The Checklist Manifesto, simple checklists save time and money. But more importantly, in our line of work, checklists save lives.

For additional reading:
“Mindless Eating: The 200 Daily Food Decisions We Overlook,” Environment and Behavior, 2007, 39:1 (January), 106-23, Brian Wansink and Jeffrey Sobal.
“Do You Suffer From Decision Fatigue?” New York Times 08/21/2011, John Tierney
The Checklist Manifesto: How to get things right, by Atul Gawande
Ken writerKen Crump (kencrump.com) is a writer and animal anesthetist and writes Making Anesthesia Easier for Advanced Anesthesia Specialists.  He makes dozens of Continuing Education presentations on veterinary oncology and anesthesia across the United States and in Canada.  Ken retired from Colorado State University in 2008. 

 

Posted in Uncategorized | 1 Comment

Unlearn Old Habits to Avoid Compassion Fatigue

 

Many of us think we’re feeling burn-out with our jobs when we’re actually feeling compassion fatigue. Two terms for the same thing? Here’s how you recognize the difference. Burn-out always arises from dissatisfaction with your work environment. It’s generally because of supervisors, poor working conditions, low pay, and/or the relationships you have with the people at work. Compassion fatigue arises from the work that you do.

Compassion fatigue is a more user friendly term for Secondary Traumatic Stress Disorder, which is nearly identical to Post-Traumatic Stress Disorder (PTSD), except it affects those emotionally affected by the trauma of another. Charles Figley, professor of Disaster Mental Health at Tulane University’s School of Social Work and coauthor of Compassion Fatigue in the Animal Care Community says, “It’s the burden of caring. It’s the psychosocial sadness we take with us. It’s the stress of dispensing compassion.”

The solution to burn-out is pretty straight forward: find another job.  However, the residual emotional effects of intense medical experiences such as euthanasia aren’t so easily solved. Dr. Kristin Neff, associate professor in Human Development and Culture at the University of Texas thinks self-compassion is at the heart of relieving compassion fatigue. She says self-compassionate people tend to be gentle with themselves when confronted with painful experiences. When people try to deny or resist their reactions to painful experiences, emotional suffering escalates into stress, frustration and self-criticism.

People who find it easy to be supportive and understanding to others – including their animal patients – often berate themselves for their own self-perceived shortcomings. Research suggests that giving ourselves a break and accepting our imperfections may be the first step toward better health. People who score high on tests of self-compassion have less depression and anxiety, and tend to be happier and more optimistic.

For those low on the self-compassion scale, Dr. Neff suggests a set of exercises — like writing yourself a letter of support, just as you might to a friend you are concerned about. She says to include in the letter a list of your best traits, and add steps you might take to help you feel better about yourself.

“The problem is that it’s hard to unlearn habits of a lifetime,” she says about our tendency to equate self-compassion with self-indulgence. “People have to actively and consciously develop the habit of self-compassion.”

 

For more information about Dr Kristin Neff’s work in self-compassion, visit http://www.self-compassion.org/

Ken writerKen Crump (kencrump.com) is a writer and animal anesthetist and writes Making Anesthesia Easier for Advanced Anesthesia Specialists.  He makes dozens of Continuing Education presentations on veterinary oncology and anesthesia across the United States and in Canada.  Ken retired from Colorado State University in 2008. 
Posted in Uncategorized | Tagged | Leave a comment

The Dangers of Prolonged Exposure to Waste Anesthetic Gas

WAGIs there a relationship between exposure to trace concentrations of waste anesthetic gasses and the development of health concerns?  After two independent groups analyzed more than seventeen studies, including one well-designed prospective study, the consensus is that there is no risk of adverse health effects to personnel where waste anesthetic gases are scavenged.

Studies published in the late 1960’s and early 1970’s pointed to waste anesthetic gas (WAG) as a direct contributor to everything from fatigue, exhaustion, and headaches to cancer, infertility, spontaneous abortion, and birth defects.  These studies resulted in a 1974 National Institute for Occupational Safety and Health (NIOSH) recommendation that waste anesthetic gas be scavenged in all areas.  Three years later NIOSH recommended that WAG exposure standards be established.

In the 1980’s, researchers examined the conclusions drawn from these earlier studies.  Seventeen studies were examined and all were found to have flaws.  They found that the results of these studies could have been influenced by confounding variables such as occupational stress, and exposure to blood, drugs, aerosols or radiation.  Even the wording of the questionnaires and the inability to verify reported outcomes by the responders may have influenced the conclusions drawn from the earlier studies.  One prospective study using annual questionnaires, surveyed all British female medical school graduates working in hospitals during the years 1977 to 1984.  Analysis showed that female anesthesiologists had no increased risk of infertility.  Another study using Finnish National Health Registry data demonstrated no statistical differences between patients who had been exposed to WAG and those who had not, when medical records were examined.

However, even with the flaws in the early WAG studies, some good came out of them: waste anesthetic gas is now scavenged.  A 1992 study in the New England Journal of Medicine and a later study in the American Journal of Epidemiology reported reduced fertility and increased spontaneous abortion among dental assistants employed in practices where nitrous oxide was not scavenged.  And despite the fact that the modern anesthetic gases of halothane, isoflurane, enflurane, sevoflurane and desflurane are believed to be harmless in trace concentrations, their predecessors were once thought to be safe as well.  Up until 1977 trichloroethylene and fluroxene were used as general anesthetics and thought to be safe.  Chloroform before that.  But none of the three are now in use as anesthetics because they were found to be hepatotoxic, mutagenic and carcinogenic.

The bottom line is that it’s important to scavenge waste anesthetic gases.  It’s also important to stay mindful to otherwise reduce your exposure to waste gases.  And finally, implement an education program for all personnel working in these areas.  Studies have shown that with these procedures in place, trace anesthetic gasses can be maintained below the levels recommended by NIOSH and OSHA.

Here is a good article with more information.

Ken writerKen Crump (kencrump.com) is a writer and animal anesthetist and writes Making Anesthesia Easier for Advanced Anesthesia Specialists.  He makes dozens of Continuing Education presentations on veterinary oncology and anesthesia across the United States and in Canada.  Ken retired from Colorado State University in 2008. 
Posted in Uncategorized | Leave a comment

Cuff Stuff – Is your way the right way?

In a recent clinical study, four different techniques for sealing an endotracheal tube cuff were evaluated. Eighty client-owned dogs were used in the study. Once intubated, each had its cuff inflated four times, by four different people. After each inflation, the cuff pressure was measured, the cuff deflated, and then the next technique was evaluated.

Spoiler alert: [I always jump ahead to the results.] None of the methods evaluated in this study consistently resulted in cuff pressures within a recommended range.

Each of the four anesthetists attempted one of these four techniques: (A) feeling the tension of the pilot balloon; (B) feeling the tension of the pilot balloon after a week’s practice inflating the cuff to a known pressure; (C) inflating the cuff to occlude at an airway pressure of 20 cmH2O; (D) incrementally deflating the cuff until a leak could be heard at an airway pressure of 25 cmH2O. Although the results showed none of the techniques adequate, it was encouraging to see that technique (B) approached success. It affirms the value of practice.

The article makes me wonder how effective my favorite techniques are at achieving an appropriate cuff pressure. Fortunately, it gives me the method to test them. I was also surprised at the techniques they chose to test. I was sure that by testing four different methods, I would see at least one of my favorites on the list.

The first method I learned was fast and easy. I would over-inflate the cuff, and then take my thumb off the syringe plunger and allow the pressure in the cuff to push the plunger back. When the plunger stopped moving backward, I would then add 1ml of air back into the cuff and disconnect the syringe.

In subsequent years, I learned a more precise method. It’s similar to technique (C) and (D), in that I use airway pressure to determine the cuff seal, rather than pilot balloon pressure. I seal the cuff at 15 cmH2O, but adjust so it leaks at 20 cmH2O pressure.

And now my interest in piqued. What is your favorite method for inflating an endotracheal tube cuff?

The clinical study: Evaluation of the endotracheal tube cuff pressure resulting from four different methods of inflation in dogs. Vet Anaesth Analg. 2012 Sep;39(5):488-94
 
Ken writerKen Crump (kencrump.com) is a writer and animal anesthetist and writes Making Anesthesia Easier for Advanced Anesthesia Specialists.  He makes dozens of Continuing Education presentations on veterinary oncology and anesthesia across the United States and in Canada.  Ken retired from Colorado State University in 2008. 
Posted in Uncategorized | Leave a comment

Now We Can Warm From Within

Peri-Anesthesia Hypothermia –

 


Warming hypothermic animals is difficult. Yet the majority of anesthesia patients have lost a significant amount of body heat before the procedure even begins. Smaller dogs and cats lose nearly 2ºF while waiting for induction of anesthesia. Then they rapidly lose  another 2º-4ºF during the first fifteen to thirty minutes after induction. This describes the challenges we face with the complex and difficult to manage syndrome: Peri-Anesthesia Hypothermia.

The Pre-Warming Solution

The reasons for up to 80% of anesthetized cats and dogs to become hypothermic include their small body size, vasodilation, inhaling cold, dry anesthetic gases, lack of shiver-response, and open body cavities during surgery. The key to solving this problem is pre-warming the patients.

It seems counter intuitive to provide thermal support before a patient needs it, but recent research shows that warming patients before induction can prevent that initial drop in body temperature, and may slow the rapid heat loss immediately following induction. This rationale sounds similar to pre-oxygenating, doesn’t it? It turns out that pre-warming is highly effective and easy to do. Just place the pre-medicated patient in a warm cage.

Warming a cage may sound simple enough, but all cage heating techniques are not created equal. Heating devices like heat lamps, jugs of warm water or heated rice bags, which are not specifically designed to warm sedated or anesthetized animals, can burn them. The margin of safety for causing significant thermal injury to animals is surprisingly narrow.

Forced warm air blanket systems are ideal to pre-warm cages because they safely deliver a constant flow of warm air at thermostatically controlled temperatures. However, all blanket systems are not created equal either. Forced warm air blanket systems built for humans are not specifically designed to make use of the fur that traps warm air against an animal’s body, and that limits their effectiveness.

Warmed Inspired Anesthetic Gas

There are many ways to reduce patient heat loss during anesthesia. You can minimize surgical prep time, insulate the patient’s feet, use warm IV fluids, and use forced warm air blankets before, during, and after anesthesia. However, none of these methods adequately address the rapid heat loss in the first fifteen minutes after induction. Just imagine how useful it would be if you could warm the inspired anesthetic gases. That way you could capture control of a patient’s body temperature at intubation, rather than playing catch-up as the procedure progresses.

Advanced Anesthesia Specialists (darvallvet.com) recently introduced two innovations to the veterinary market. One is the Cocoon® forced warm air blanket system, that is proven to warm patients rather than just slow the rate at which they cool. The other is the world’s first heated breathing circuit. These smooth-wall heated circuits warm the inspired gases, allowing you control of patient hypothermia from the moment of intubation. Using these in combination is shown to adequately manage Peri-Anesthesia Hypothermia. For more information, click here.

Ken writerKen Crump (kencrump.com) is a writer and animal anesthetist and writes Making Anesthesia Easier for Advanced Anesthesia Specialists.  He makes dozens of Continuing Education presentations on veterinary oncology and anesthesia across the United States and in Canada.  Ken retired from Colorado State University in 2008. 
Posted in Uncategorized | Leave a comment

Age is not a disease…

When it comes to anesthesia, pet owners and their veterinarians sometimes see age as an obstacle to necessary health maintenance for older pets. It reminds Dr Ralph Harvey of the way people maintain older cars. “Owners are reluctant to care for the engine because they assume the body will go bad, and they fail to care for the body because they think the engine will go,” Harvey says. “If nothing is being cared for, it will surely fall apart.”

In a VPN article, Contributing Editor Jessica Tremayne-Farkas spoke with leading veterinary anesthesiologists about meeting the anesthetic challenges we face with geriatric patients.

While customized monitoring and drugs are provided for every patient, those falling into the geriatric category—in the last 25% of their life expectancy—require extra precaution because underlying health conditions are more likely to be present.

“Older patients are more likely to have concurrent disease or mild to moderate organ dysfunction that would require the routine anesthesia protocol be adjusted,” says Dr Khursheed Mama. “A thorough pre-operative physical examination and blood work should help identify most of these and allow the veterinarian to provide appropriate care.”

Some of these conditions lie beyond the reach of routine tests. “In addition to testing,” says Dr. Harvey, “a veterinarian must be in tune with an older patient’s psycho-social issues. Sometimes an older animal doesn’t do as well at the veterinary practice, away from its family and home. Considerations should be made to make the stay less stressful.”

Not all elderly patients require additional or unique care, but identifying this ahead of time and planning for it when necessary is appropriate. Dr Mama explains that “there is a need to educate the general veterinarian on options available to them to manage these patients.”

“Clients will expect their primary care practitioner to be able to meet the needs of their senior pet,” Dr Bednarski says. “Because of this demand, there is a lot of continuing education available on senior pets for veterinarians and their staffs.

The read the complete article, click here.

photo: http://handsomedogs.com
 
Ken writerKen Crump (kencrump.com) is a writer and animal anesthetist and writes Making Anesthesia Easier for Advanced Anesthesia Specialists.  He makes dozens of Continuing Education presentations on veterinary oncology and anesthesia across the United States and in Canada.  Ken retired from Colorado State University in 2008. 
Posted in Uncategorized | Leave a comment